An alternating direction scheme on a nonuniform mesh for reaction–diffusion parabolic problems

نویسنده

  • C. CLAVERO
چکیده

In this paper we develop a numerical method for two-dimensional time-dependent reaction–diffusion problems. This method, which can immediately be generalized to higher dimensions, is shown to be uniformly convergent with respect to the diffusion parameter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high order uniformly convergent alternating direction scheme for time dependent reaction-diffusion singularly perturbed problems

In this work we design and analyze a numerical method to solve efficiently two dimensional initial-boundary value reaction-diffusion problems, where the diffusion parameter can be very small in comparison with the reaction term. The method is defined by combining the Peaceman & Rachford alternating direction method to discretize in time with a finite difference scheme of HODIE type, which is de...

متن کامل

Domain Decomposition Operator Splittings for the Solution of Parabolic Equations

We study domain decomposition counterparts of the classical alternating direction implicit (ADI) and fractional step (FS) methods for solving the large linear systems arising from the implicit time stepping of parabolic equations. In the classical ADI and FS methods for parabolic equations, the elliptic operator is split along coordinate axes; they yield tridiagonal linear systems whenever a un...

متن کامل

On the Stability of Alternating-Direction Explicit Methods for Advection-Diffusion Equations

Alternating-Direction Explicit (A.D.E.) finite-difference methods make use of two approximations that are implemented for computations proceeding in alternating directions, e.g., from left to right and from right to left, with each approximation being explicit in its respective direction of computation. Stable A.D.E. schemes for solving the linear parabolic partial differential equations that m...

متن کامل

On the uniform convergence of a finite difference scheme for time dependent singularly perturbed reaction-diffusion problems

In this work we are interested in the numerical approximation of 1D parabolic singularly perturbed problems of reaction–diffusion type. To approximate the multiscale solution of this problem we use a numerical scheme combining the classical backward Euler method and central differencing. The scheme is defined on some special meshes which are the tensor product of a uniform mesh in time and a sp...

متن کامل

Cubic spline Adaptive Wavelet Scheme to Solve singularly perturbed Reaction Diffusion Problems

In this paper, the collocation method proposed by Cai and Wang1 has been reviewed in detail to solve singularly perturbed reaction diffusion equation of elliptic and parabolic types. The method is based on an interpolating wavelet transform using cubic spline on dyadic points. Adaptive feature is performed automatically by thresholding the wavelet coefficients. Numerical examples are presented ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000